手机浏览器扫描二维码访问
很多人都玩过电子游戏。
比如说电子游戏“推箱子”,游戏画面就是二维;而现在3D产品问世,现在好多人玩的游戏都是所谓的三维。
而所谓的空间结构,作者通俗来说。
一维是点,二维是平面,三维是空间。
从解析几何上来说,一维是粉笔下的点,二维是直线x垂直于直线y所构成平面,三维是垂直于二维平面所形成的空间。
四维之上至更高的纬度,对于作者所处的时间线来说,是很难理解的。
。
。
。
如果说在空间中引入磁场,或者在磁场中引入空间。(本章节纯属娱乐)
如果一个点,在处于正常状态,就只是一个点。如果加上其他因素,就可能不是一个点。比如点的内部存在将点分化瓦解成两个半点的东西。这可能是条线x了(警惕:把点看成线,把线看成点)。如果两半点所处的线在某时间与线x两两相互垂直,就构成了三维空间。
简单的磁场体系(理想条件)是一个体系中存在贯穿该体系的一条直线的同时存在两个点(假定为加点和减点)。
假定1
由加(减)点到减(加)点的线段任意画圆弧(圆弧直径不超过线段长度),就会形成一个扇面a,在该扇面所在平面内,只有唯一的一个扇面与扇面a共用一个线段。那么这两个扇面组成的图形就是对称图形。
如果扇面a形状恒定,线段位置恒定,但扇面a所处平面不恒定,就会构成一个类似于椭球体的空间。
这个模型就很像西瓜。我们都知道西瓜籽是遍布西瓜内部的,在瓜皮内。
假定2
假定1(粘贴)由加(减)点到减(加)点的线段任意画圆弧(圆弧直径超过线段长度但小于二倍线段长),就会形成一个扇面a,在该扇面所在平面内,只有唯一的一个扇面与扇面a共用一个线段。那么这两个扇面组成的图形就是对称图形。
如果扇面a形状恒定,线段位置恒定,但扇面a所处平面不恒定,就会构成一个类似于环体的空间模型。
这个模型就很像苹果。我们都知道苹果籽是贴着苹果核的。
假定3
假定1(粘贴)由加(减)点到减(加)点的线段任意画圆弧(圆弧直径超过线段二倍线段长),就会形成一个扇面a,在该扇面所在平面内,只有唯一的一个扇面与扇面a共用一个线段。那么这两个扇面组成的图形就是对称图形。
如果扇面a形状恒定,线段位置恒定,但扇面a所处平面不恒定,就会构成一个环体的空间模型。
单类似于环体和环体究竟有什么区别。
我们不知道。
我们只知道苹果成熟后是会掉落的(内部外部共同作用)。((所以,动物都学会了采摘。))
请勿开启浏览器阅读模式,否则将导致章节内容缺失及无法阅读下一章。
重生断绝亲缘,家人跪着求原谅 刚下山,美女总裁把我拉去登记 穿成冰块脸雇主的阿姨,我懵了! 斩天剑帝 穿越高武魔明,开局成为锦衣卫 高武,开局冰封一个市 狂仙下山 我被拍卖行裁员后,反手坑死老板 和女神们流落荒岛,我为王! 我在洪荒开网咖 网游之我在游戏里封神 守命人 航海:拥有海神金币的我将纵横海域 快穿之反派大佬是我囊中物 权臣白天冷冰冰,晚上夺我入帐 替人养子?我休夫改嫁振朝纲! 净身出户,我被前妻闺蜜疯狂追求 侯亮平举报我,反手直接开除他 我们还在高考,倒数的你却封神了 修仙:就要抢男女主机缘
她本是实力强悍,医术超群的世家家主。 一朝穿越成将军府的废柴嫡小姐,成为第一位被退婚的太子妃,人人嘲讽! 选秀宴上,她被赐嫁给鼎鼎有名的残废王爷。 ...
本书旨在打造第一刁民!...
伴随着魂导科技的进步,斗罗大陆上的人类征服了海洋,又发现了两块大陆。魂兽也随着人类魂师的猎杀走向灭亡,沉睡无数年的魂兽之王在星斗大森林最后的净土苏醒,它要...
简然以为自己嫁了一个普通男人,谁料这个男人摇身一变,成了她公司的总裁大人。不仅如此,他还是亚洲首富帝国集团最神秘的继承者。人前,他是杀伐果断冷血无情的商业帝国掌舵者。人后,他是一头披着羊皮的狼,把她啃得连骨头也不剩。...
大妖降世,卷风云万里,遍野尸横无归人。痴儿怨女,叹红尘滚滚,牵马负刀不回头。圣人云端坐,邪灵白日行。魏来自卑微而来,踏黄泉碧落,吞无边苦海,只为证天道已死!人道当兴!...
化神境修士陈默,与小师妹双双陨落后,竟然重回地球的高三时代?!前世初恋,陈默不屑一顾。前世敌人,陈默一拳打爆。前世你看我不起?今世我让你望尘莫及!...